Single Wire Transmission of Energy - Nikola Tesla Wiki - Nikola Tesla Legend
Single Wire Transmission of Energy

Single Wire Transmission of Energy

Ivana Knežević

A system for the conversion and transmission of electrical energy. In operating various devices with his high-frequency power supply using only one connecting wire he realized the load can placed at some distance from the power supply and still function properly. This is what Tesla called the transmission of electrical energy through one wire without return. Instead of using individual capacitor plates at the transmitting and receiving ends, it is also possible to make a connection directly to the ground. In this case the electrical circuit is completed entirely through the earth itself. The accompanying illustration of a one-wire power transmission system is from Tesla's US593,138 - Electrical Transformer - November 2, 1897 covering the Tesla coil resonance transformer.

 

Image

 Energy transmission bound to a wire - US593,138 - Electrical Transformer - November 2, 1897

 

http://www.tuks.nl/Mirror/frankgermano_net/nikolatesla2.htm

 

The first to be demonstrated was the operation of light and motive devices connected by a single wire to only one terminal of the high frequency coil, presented in the 1891 lecture Experiments With Alternating Currents of Very High Frequency, and Their Application to Methods of Artificial Illumination - Delivered before the American Institute of Electrical Engineers, Columbia College, N.Y., May 20, 1891. (Inventions, Researches and Writings of Nikola Tesla, pp. 156-172; Nikola Tesla On His Work With Alternating Currents and Their Application to Wireless Telegraphy, Telephony, and Transmission of Power, p. 7).

 

Image

 

"I have stated above that a body enclosed there is no difficulty whatever in bringing a wire or filament to any degree of incandescence by simply connecting it to one terminal of a coil of the proper dimensions. Thus, if the well-known apparatus of Prof. Crookes, consisting of a bent platinum wire with vanes mounted over it (Fig. 18 / 114), be connected to one in an unexhausted bulb may be intensely heated by simply connecting it with a source of rapidly alternating potential. The heating in such a case is, in all probability, due mostly to the bombardment of the molecules of the gas contained in the bulb. When the bulb is exhausted, the heating of the body is much more rapid, and terminal of the coil—either one or both ends of the platinum wire being connected—the wire is rendered almost instantly incandescent, and the mica vanes are rotated as though a current from a battery were used: A thin carbon filament, or, preferably, a button of some refractory material (Fig. 19 / 115), even if it be a comparatively poor conductor, inclosed in an exhausted globe, may be rendered highly incandescent; and in this manner a simple lamp capable of giving any desired candle power is provided".

 

While a single terminal lamp connected to one of an induction coil’s secondary terminals does not form a closed circuit, “in the ordinary acceptance of the term” the circuit is closed in the sense that a return path is established back to the secondary by what Tesla called “electrostatic induction” (or so called displacement currents). This is due to the fact that the lamp’s filament or refractory button has capacitance relative to the coil’s free terminal and environment and the secondary’s free terminal also has capacitance relative to the lamp and environment.

 

Tesla gave some additional thoughts on the concept of energy transmission through one wire without return in the lecture "Light and Other High Frequency Phenomena" delivered before the Franklin Institute, Philadelphia, February 1893, and before the National Electric Light Association, St. Louis, March, 1893, and before the National Electric Light Association, St. Louis, March 1893 (Inventions, Researches and Writings of Nikola Tesla, pp. 294-373).

 

"In Fig. 20 I / 184 I. is shown a plan which has been followed in the study of the resonance effects by means of a high frequency alternator. C1 is a coil of many turns, which is divided into small separate sections for the purpose of adjustment. The final adjustment was made sometimes with a few thin iron wires (though this is not always advisable) or with a closed secondary. The coil C1 is connected with one of its ends to the line L from the alternator G and with the other end to one of the plates C of a condenser C C1, the plate (C1) of the latter being connected to a much larger plate P1. In this manner both capacity and self-induction were adjusted to suit the dynamo frequency".

 

"As regards the rise of potential through resonant action, of course, theoretically, it may amount to anything since it depends on self-induction and resistance and since these may have any value. But in practice one is limited in the selection of these values and besides these, there are other limiting causes. One may start with, say, 1,000 volts and raise the E. M. F. to 50 times that value, but one cannot start with 100,000 and raise it to ten times that value because of the losses in the media which are great, especially if the frequency is high. It should be possible to start with, for instance, two volts from a high or low frequency circuit of a dynamo and raise the E. M. F. to many hundred times that value. Thus coils of the proper dimensions might be connected each with only one of its ends to the mains from a machine of low E. M. F., and though the circuit of the machine would not be closed in the ordinary acceptance of the term, yet the machine might be burned out if a proper resonance effect would be obtained. I have not been able to produce, nor have I observed with currents from a dynamo machine, such great rises of potential. It is possible, if not probable, that with currents obtained from apparatus containing iron the disturbing influence of the latter is the cause that these theoretical possibilities cannot be realized. But if such is the case I attribute it solely to the hysteresis and Foucault current losses in the core".

 

"Generally it was necessary to transform upward, when the E. M. F. was very low, and usually an ordinary form of induction coil was employed, but sometimes the arrangement illustrated in Fig. 20 II., has been found to be convenient. In this case a coil C is made in a great many sections, a few of these being used as a primary. In this manner both primary and secondary are adjustable. One end of the coil is connected to the line L1 from the alternator, and the other line L is connected to the intermediate point of the coil. Such a coil with adjustable primary and secondary will be found also convenient in experiments with the disruptive discharge. When true resonance is obtained the top of the wave must of course be on the free end of the coil as, for instance, at the terminal of the phosphorescence bulb B. This is easily recognized by observing the potential of a point on the wire w near to the coil".

 

Image

 Fig.20

 

Tesla shows two additional examples of one-wire transmission. In the arrangement labeled I above, his intention is to show the effect of resonance in promoting the movement of energy along conductor L. Arrangement II diagrams a self-induction coil with a tap near one end, effectively dividing the coil primary and secondary sections. It shows one-wire transmission from the transformer’s free terminal to a single terminal lamp. In both cases, conductor L1 constitutes a part of the return circuit. Also notice the two vertical lines to the extreme left and right in the illustration. These appear to represent the walls of an enclosed space, or, perhaps, nearby parts of the general environment.

 

The Problem of Increasing Human Energy: With Special Reference to the Harnessing of the Sun’s Energy. by Nikola Tesla - Century Illustrated Magazine - June 1900 -Discovery of unexpected properties of the atnosphere - Strange experiments - Transmission of electrical energy throughone wire without return - Transmission through the earth without any wire - See Nikola Tesla: Colorado Springs Notes, page 360, Photograph XXVIII:

 

Another of these reasons was that I was led to recognize the transmission of electrical energy to any distance through the media as by far the best solution of the great problem of harnessing the sun's energy for the uses of man. For a long time I was convinced that such a transmission on an industrial scale, could never be realized, but a discovery which I made changed my view. I observed that under certain conditions the atmosphere, which is normally a high insulator, assumes conducting properties, and so becomes capable of conveying any amount of electrical energy. But the difficulties in the way of a practical utilization of this discovery for the purpose of transmitting electrical energy without wires were seemingly insuperable. Electrical pressures of many millions of volts had to be produced and handled; generating apparatus of a novel kind, capable of withstanding the immense electrical stresses, had to be invented and perfected, and a complete safety against the dangers of the high-tension currents had to be attained in the system before its practical introduction could be even thought of. All this could not be done in a few weeks or months, or even years. The work required patience and constant application, but the improvements came, though slowly. Other valuable results were, however, arrived at in the course of this long-continued work, of which I shall endeavor to give a brief account, enumerating the chief advances as they were successively effected.

 

The discovery of the conducting properties of the air, though unexpected, was only a natural result of experiments in a special field which I had carried on for some years before. It was, I believe, during 1889 that certain possibilities offered by extremely rapid electrical oscillations determined me to design a number of special machines adapted for their investigation. Owing to the peculiar requirements, the construction of these machines was very difficult, and consumed much time and effort; but my work on them was generously rewarded, for I reached by their means several novel and important results. One of the earliest observations I made with these new machines was that electrical oscillations of an extremely high rate act in an extraordinary manner upon the human organism. Thus, for instance, I demonstrated that powerful electrical discharges of several hundred thousand volts, which at that time were considered absolutely deadly, could be passed through the body without inconvenience or hurtful consequences. These oscillations produced other specific physiological effects, which, upon my announcement, were eagerly taken up by skilled physicians and further investigated. This new field has proved itself fruitful beyond expectation, and in the few years which have passed since, it has been developed to such an extent that it now forms a legitimate and important department of medical science. Many results, thought impossible at that time, are now readily obtainable with these oscillations, and many experiments undreamed of then can now be readily performed by their means. I still remember with pleasure how, nine years ago, I passed the discharge of a powerful induction-coil through my body to demonstrate before a scientific society the comparative harmlessness of very rapidly vibrating electric currents, and I can still recall the astonishment of my audience. I would now undertake, with much less apprehension that I had in that experiment, to transmit through my body with such currents the entire electrical energy of the dynamos now working at Niagara—forty or fifty thousand horse-power. I have produced electrical oscillations which were of such intensity that when circulating through my arms and chest they have melted wires which joined my hands, and still I felt no inconvenience. I have energized with such oscillations a loop of heavy copper wire so powerfully that masses of metal, and even objects of an electrical resistance specifically greater than that of human tissue brought close to or placed within the loop, were heated to a high temperature and melted, often with the violence of an explosion, and yet into this very space in which this terribly-destructive turmoil was going on I have repeatedly thrust my head without feeling anything or experiencing injurious after-effects.

 

Another observation was that by means of such oscillations light could be produced in a novel and more economical manner, which promised to lead to an ideal system of electric illumination by vacuum-tubes, dispensing with the necessity of renewal of lamps or incandescent filaments, and possibly also with the use of wires in the interior of buildings. The efficiency of this light increases in proportion to the rate of the oscillations, and its commercial success is, therefore, dependent on the economical production of electrical vibrations of transcending rates. In this direction I have met with gratifying success of late, and the practical introduction of this new system of illumination is not far off.

 

The investigations led to many other valuable observations and results, one of the more important of which was the demonstration of the practicability of supplying electrical energy through one wire without return. At first I was able to transmit in this novel manner only very small amounts of electrical energy, but in this line also my efforts have been rewarded with similar success.

 

 

Other links to check:

 

•             http://blueyogurt.com/wp-content/uploads/2013/10/Yan_final_proposal.pdf

•             http://pesn.com/2011/06/14/9501846_Tesla_One-Wire_Transmission_by_Bill_Williams/

 

 

This article represents the adaptation of original article published on teslaresearch.jimdofree.com.

 

 

 

Print

DID YOU KNOW THAT TESLA LOVED TO DRINK WINES FROM VARAZDIN, CROATIA

Popular Nikola Tesla items on our Store

Subscribe to our newsletter

Stay connected with us. Subscribe to our newsletter to find out what we have recently discovered and published about Nikola Tesla.